Arnarlax
ASC- og C-undersøkelse
Eyri, 2018.
Rapporttittel / Report title

<table>
<thead>
<tr>
<th>Forfatter(e) / Author(s)</th>
<th>Akvaplan-niva rapport nr / report no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hans-Petter Mannvik</td>
<td>60033.01</td>
</tr>
<tr>
<td>Snorri Gunnarson</td>
<td></td>
</tr>
</tbody>
</table>

| Dato / Date | 12.02.2019 |

| Antall sider / No. of pages | 21 + vedlegg |

<table>
<thead>
<tr>
<th>Distribusjon / Distribution</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gjennom oppdragsgiver</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oppdragsgiver / Client</th>
<th>Oppdragsg. referanse / Client's reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arnarlax hf., 465 Bíldudal, Island</td>
<td>Þóra Dögg Jörundsdóttir</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sammendrag / Summary</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resultatene fra overvåkingen ved oppdrettslokaliteten Eyri i 2018 viste at sedimentene var noe belastet med organisk karbon og kobberkonsentrasjonen var noe forhøyet på Ey1. Det ble registrert belastningseffekt på stasjon Ey1, Ey3, Ey5 og Ey6 og samlet faunaindeks nEQR viste moderat påvirkning her. For de andre stasjonene viste nEQR god faunatilstand. Diversiteten H' var over 4 på Ey2 og Ey7 og under 3 på de andre stasjonene. NS 9410:2016-vurdering av samfunnet i anleggsjonen viste miljøtilstand 1 (Meget god) for Ey1 og tilstand 2 (God) for Ey5. Det ble ikke registrert forurensningsindikatorer blant topp-10 på noen av stasjonene. Redoks-verdiene i sedimentet var positive for alle stasjonene.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prosjektleder / Project manager</th>
<th>Kvalitetskontroll / Quality control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snorri Gunnarson</td>
<td>Roger Velvin</td>
</tr>
</tbody>
</table>

© 2019 Akvaplan-niva AS. Rapporten kan kun kopieres i sin helhet. Kopiering av deler av rapporten (tekstutsnitt, figurer, tabeller, konklusjoner, osv.) eller gjengivelse på annen måte, er kun tillatt etter skriftlig samtykke fra Akvaplan-niva AS.
INNHOLDSFORTENGENELSE

FORORD ... 2

1 OPPSUMMERING .. 3
 1.1 Oppsummering av ASC-resultatene .. 3
 1.2 Summary of the ASC results ... 4
 1.3 Oppsummering av C-resultatene ... 5
 1.4 Summary of the C results .. 6

2 INNLEDNING .. 7
 2.1 Bakgrunn og formål .. 7
 2.2 Drift og førforbruk .. 7
 2.3 Tidligere undersøkelser ... 8

3 MATERIALE OG METODE ... 9
 3.1 Faglig program ... 9
 3.2 Valg av ASC-stasjoner og AZE .. 9

4 ASC-UNDERSØKELSE EYRI .. 11
 4.1 Resultater .. 11
 4.1.1 Sedimentbeskrivelser og redoks målinger (Eh) 11
 4.1.2 Kobber i sedimenter ... 11
 4.1.3 Kvantitative bunndyranalyser 11

5 C-UNDERSØKELSE EYRI .. 13
 5.1 Innledning ... 13
 5.2 Faglig program og stasjonsutvelgelse 13
 5.3 Resultater .. 14
 5.3.1 Hydrografi .. 14
 5.3.2 TÖC, TOM, TN, C/N, kornfordeling og pH/Eh 14
 5.3.3 Kobber ... 15
 5.3.4 Bløtbunnfauna .. 15
 5.4 Sammenfattende vurderinger – C-undersøkelse 19
 5.4.1 Sammenfatning .. 19
 5.4.2 Konklusjon ... 19

6 REFERANSER .. 20

7 VEDELLG ... 21
 Vedlegg 1. Metodebeskrivelser og klassifiseringsystemer 21
 Vedlegg 2. Prosedyre for beregning av AZE 24
 Vedlegg 3. Bunndyrstatistikk og artslister 25
 Vedlegg 4. Analyserapport – Geokjemiske analyser 37
Forord

Følgende personer har deltatt:

<table>
<thead>
<tr>
<th>Navn</th>
<th>Organisasjon</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snorri Gunnarson</td>
<td>Akvaplan-niva</td>
<td>Feltarbeid, rapport, prosjektleder.</td>
</tr>
<tr>
<td>Roger Velvin</td>
<td>Akvaplan-niva</td>
<td>Identifisering bunndyr (Varia). KS rapport, faglige vurderinger og fortolkninger.</td>
</tr>
<tr>
<td>Rune Palerud</td>
<td>Akvaplan-niva</td>
<td>Identifisering bunndyr (krepsdyr). Statistikk.</td>
</tr>
<tr>
<td>Kamila Sztybor</td>
<td>Akvaplan-niva</td>
<td>Identifisering bunndyr (børstemark).</td>
</tr>
<tr>
<td>Jesper Hansen</td>
<td>Akvaplan-niva</td>
<td>Identifisering bunndyr (bløtdyr).</td>
</tr>
<tr>
<td>Kristine H Sperre</td>
<td>Akvaplan-niva</td>
<td>Koordinering av bunndyrsortering.</td>
</tr>
<tr>
<td>Ingar H. Wasbotten</td>
<td>Akvaplan-niva</td>
<td>Koordinering av geokjemiske analyser.</td>
</tr>
</tbody>
</table>

Akvaplan-niva vil takke Arnarlax, Þóra Dógg Jörundsdóttir, for godt samarbeid.

Akkrediteret virksomhet:

Undersøkelsen er utført av Akvaplan-niva AS med ALS Laboratory Group (Tjekkia) som underleverandør.

Akvaplan-niva AS er akkrediteret av Norsk Akkreditering for feltinnsamlinger av sediment og fauna, analyser av TOC, TOM, TN, kornsterrelse, makrofauna og faglig vurderinger og fortolkninger, akkrediteringsnr. TEST 079.

Akvaplan-niva AS

Kópavogur, 12.02.2019

Snorri Gunnarson
Prosjektleder
1 Oppsummering

1.1 Oppsummering av ASC-resultatene

<table>
<thead>
<tr>
<th>Indikator i ASC</th>
<th>ASC krav</th>
<th>Resultater</th>
<th>Kommentarer til prøvetaking</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1</td>
<td>Redox > 0 mV eller sulphid level < 1500 microMol/L</td>
<td>Ey 1, Ey 2, Ey 3, Ey 4, Ey 5, Cu1, Cu2</td>
<td>155, 162, 156, 151, 156, 161, 155</td>
</tr>
<tr>
<td>2.1.2</td>
<td>«Faunal index score» utenfor AZE indikerer god til svært god økologisk status – Shannon-Wiener > 3</td>
<td>2,50, 4,21, 2,47, 2,99, 2,15, -</td>
<td>-</td>
</tr>
<tr>
<td>2.1.3</td>
<td>>= 2 taksa av makrofauna innenfor AZE som ikke er forurensningsindikatorer, med en tilstedeværelse på over 100 ind/m²</td>
<td>4, -, -</td>
<td>2, -, -</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Kobbernivå < 34 mg/kg tørrstoff</td>
<td>33,6, 28,8/35,0, 32,3'/38,1, 34,7'/30,2, -</td>
<td>40,0'/33,4, 35,4'/35,2</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Lokalspesifikk AZE</td>
<td>Se kapt. 3.2.</td>
<td></td>
</tr>
</tbody>
</table>

Konklusjoner:
Kobberkonsentrasjonene var forholdsvis lave og mellom 28,8 og 40,0 mg/kg i de undersøkte sedimentene. Redokspotensialene (Eh) var positive i sedimentene på alle stasjonene. Artsmangfoldet var noe lavt i bløtbunnsamfunnet fra stasjon Ey1, Ey3, Ey4 og Ey5 med diversitetsindeks H' < 3, og > 3 på Ey2. En vurdering av bløtbunnsamfunnet i anleggsområdet/AZE (stasjon Ey1 og Ey5) i henhold til ASC-standarden viste at det fantes to eller flere arter, som ikke er forurensningsindikator (pollution indicator species) med 100 eller flere individer/m². En vurdering av faunaen på stasjonene innenfor AZE i hht. NS 9410:2016 viste miljøtilstand 1 (meget god) for bløtbunnsamfunnet på Ey1 og 2 (god) på Ey5.

En oversikt over anlegget med stasjoner og AZE-sone inntegnet (rød linje) er vist i figuren under.
1.2 Summary of the ASC results

<table>
<thead>
<tr>
<th>Indicator in ASC</th>
<th>ASC demand</th>
<th>Results</th>
<th>Remarks of the sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1</td>
<td>Redox >0 mV or sulphide level < 1500 microMol/L</td>
<td>Ey 1: 154.8, Ey 2: 158.0, Ey 3: 156.2, Ey 4: 158.5, Ey 5: 155.8, Cu1: 160.9, Cu2: 154.5</td>
<td></td>
</tr>
<tr>
<td>2.1.2</td>
<td>«Faunal index score» outside AZE indicates good to very good ecological status – Shannon-Wiener > 3</td>
<td>Ey 7: 2.50, Cu2: 4.21, Cu1: 2.47, Cu2: 2.99, Cu1: 2.15</td>
<td></td>
</tr>
<tr>
<td>2.1.3</td>
<td>>= 2 macro faunal taxa within AZE which are not pollution indicator species, with more than 100 ind/m² present</td>
<td>Ey 1: 4, Ey 2: - , Ey 3: - , Ey 4: - , Ey 5: 2</td>
<td></td>
</tr>
<tr>
<td>4.7.4</td>
<td>Copper level < 34 mg/kg dry sediment</td>
<td>Ey 1: 33.6/35.0, Ey 2: 32.3/38.1, Ey 3: 34.7/30.2, Cu1: 28.8/35.0, Cu2: 34.7/30.2, Cu1: 40.0/33.4, Cu2: 35.4/35.2</td>
<td></td>
</tr>
<tr>
<td>2.1.4</td>
<td>Location specific AZE</td>
<td>See chapter 3.2.</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions:

The copper level was generally low and between 28.8 and 40.0 mg/kg in all the sediments. The redox potential (Eh) was positive in all sediments. The faunal diversity was low at station Ey1, Ey3, Ey4 and Ey5 with the diversity index $H' < 3$, and high at Ey2. An evaluation of the faunal community within the AZE (stations Ey1 and Ey5) in accordance to the ASC standard showed that there were two or more species, which were not pollution indicator species, present with 100 or more individuals/m². An evaluation of the fauna at the stations within the AZE, in accordance with NS 9410:2016, gave an environmental classification of 1 ("Very god") for the community at C1 and 2 ("God") at C5.

An overview of the location of the stations and the AZE zone (red line) is shown in the figure below.
1.3 Oppsummering av C-resultatene

Informasjon oppdragsgiver

<table>
<thead>
<tr>
<th>Tittel</th>
<th>C-undersøkelse Eyri, 2018.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapport nr.</td>
<td>60033.01</td>
</tr>
<tr>
<td>Lokalitet:</td>
<td>Eyri</td>
</tr>
<tr>
<td>Lokalitet nr.</td>
<td>Kartkoordinater (anlegg):</td>
</tr>
<tr>
<td></td>
<td>65°34,850 N</td>
</tr>
<tr>
<td></td>
<td>23°58,400 V</td>
</tr>
<tr>
<td>Fylke:</td>
<td>Kommune:</td>
</tr>
<tr>
<td>MTB-tillatelse:</td>
<td>Område MBT</td>
</tr>
<tr>
<td>Driftsleder:</td>
<td>Rolf Orjan Nordli</td>
</tr>
<tr>
<td>Oppdragsgiver:</td>
<td>Arnarlax</td>
</tr>
</tbody>
</table>

Biomasse/produksjonsstatus ved undersøkelsesdato 17.05.2018

<table>
<thead>
<tr>
<th>Fiskegruppe:</th>
<th>Laks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomasse ved undersøkelse:</td>
<td>0</td>
</tr>
<tr>
<td>Utført mengde:</td>
<td>0</td>
</tr>
<tr>
<td>Produsert mengde:</td>
<td>0</td>
</tr>
</tbody>
</table>

Type/tidspunkt for undersøkelse

<table>
<thead>
<tr>
<th>Maks biomasse:</th>
<th>Oppfølgende undersøkelse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brakklegging:</td>
<td>Ny lokalitet:</td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Resultat fra C undersøkelse /NS 9410 (2016) - Hovedresultat bløtbunnfauna

<table>
<thead>
<tr>
<th>Faunaindeks nEQR (Veileder 02:2013 rev. 2015)</th>
<th>Diversitetsindeks H' (Shannon Wiener)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fauna Ey 1 (innerst)</td>
<td>0,569</td>
</tr>
<tr>
<td>Fauna Ey 2 (ytterst)</td>
<td>0,718</td>
</tr>
<tr>
<td>Fauna Ey 3</td>
<td>0,564</td>
</tr>
<tr>
<td>Fauna Ey 4 (dypområde)</td>
<td>0,618</td>
</tr>
<tr>
<td>Fauna Ey 5</td>
<td>0,525</td>
</tr>
<tr>
<td>Fauna Ey 6</td>
<td>0,554</td>
</tr>
<tr>
<td>Fauna Ey 7</td>
<td>0,699</td>
</tr>
<tr>
<td>Dato feltarbeid:</td>
<td>17.05.2018</td>
</tr>
<tr>
<td>Dato rapport:</td>
<td>12.02 2019</td>
</tr>
</tbody>
</table>

Merknader til andre resultater (sediment, pH/Eh, oksygen)

nTOC fra 27,8 – 30,7 (moderat)
Kobber litt forhøyet på Cu1
Eh positiv på alle stasjonene
O₂-forholdene gode i hele vannsøylen.

Ansvarlig feltarbeid: Snorri Gunnarsson

Signatur:
1.4 Summary of the C results

<table>
<thead>
<tr>
<th>Client information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title: C-undersøkelse Eyri, 2018.</td>
</tr>
<tr>
<td>Report nr.: 60033.01</td>
</tr>
<tr>
<td>Location: Eyri</td>
</tr>
<tr>
<td>Location nr.: 65°34,850 N 23°58,440 V</td>
</tr>
<tr>
<td>Fylke: Kommune:</td>
</tr>
<tr>
<td>MTB-permission: Område MBT</td>
</tr>
<tr>
<td>Client: Amarlax</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biomass/production status at date of investigation 17.05.2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish group: Atlantic Salmon</td>
</tr>
<tr>
<td>Biomass on examination: 0</td>
</tr>
<tr>
<td>Feed input: 0</td>
</tr>
<tr>
<td>Produced quantity: 0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type/tidspunkt for undersøkelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum biomass</td>
</tr>
<tr>
<td>Follow up study:</td>
</tr>
<tr>
<td>Fallow:</td>
</tr>
<tr>
<td>New location: X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results from C study /NS 9410 (2016) - Main result soft bottom fauna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faunal index nEQR (Veileder 02:2013 rev. 2015)</td>
</tr>
<tr>
<td>Fauna Ey 1 (inner)</td>
</tr>
<tr>
<td>Fauna Ey 2 (outer)</td>
</tr>
<tr>
<td>Fauna Ey 3</td>
</tr>
<tr>
<td>Fauna Ey 4 (depth layers)</td>
</tr>
<tr>
<td>Fauna St 5</td>
</tr>
<tr>
<td>Fauna Ey 6</td>
</tr>
<tr>
<td>Fauna Ey 7</td>
</tr>
<tr>
<td>Date fieldwork:</td>
</tr>
<tr>
<td>Notes to other results (sediment, pH/Eh, oxygen):</td>
</tr>
<tr>
<td>nTOC from 27.8 – 30.7 (moderate)</td>
</tr>
<tr>
<td>Copper somewhat high at C1</td>
</tr>
<tr>
<td>Eh positive at all stations O2-forholdene gode i hele vannsøylen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Responsible for fieldwork:</th>
<th>Snorri Gunnarsson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature:</td>
<td>[Signature Image]</td>
</tr>
</tbody>
</table>
2 Innledning

2.1 Bakgrunn og formål

Akvaplan-niva har på vegne av Arnarlax gjennomført en ASC- og C-undersøkelse på lokalitet Eyri i Patreksfjörður, Island (Figur 1). Undersøkelsen er utført med bakgrunn i at Arnarlax ønsker å sertifisere lokaliteten i henhold til Aquaculture Stewardship Council (ASC-standarden) samt oppføre krav fra Islandske myndigheter vedrørende miljøoversikt av anlegget. Det er samtidig foretatt en miljøundersøkelse iht. kap 5.0 i NS 9410:2016. Denne følger C-metodikk og inngår i lokalitetens forundersøkelse før ny etablering.

Metodene ved prøvetaking og analyser oppfyller også krav stilt i ISO 12878. Undersøkelsen er også utført etter overvåkingsplan (sent til Umhverfisstofnun) for å tilfredsstille krav i lokalitetstillatelse fra Islandske myndigheter.

![Figur 1. Oversiktskart over Patreksfjörður med plassering av lokaliteten Eyri (rødt kryss). Koordinater for anleggets senterpunkt er angitt i bildets høyre kant.](image)

2.2 Drift og førforbruk

Anlegget er en rammefortøyning med 2 x 7 bur, totalt 14 merder på 160 meters omkrets. Eyri er ny lokalitet og har ikke vært i drift før. Det utføres derfor en forundersøkelse i sjøområdet.

På Island gis ikke MTB-grense på lokalitetsnivå (maksimal tillatt biomasse) slik som i Norge. MTB-grense bestemmer hvor mye levende fisk innehaveren av tillatelsen kan ha stående i sjøen til enhver tid. MTB reguleres på to nivå: lokalitetsnivå og selskapsnivå. Til Eyri er planlagt maks stående mengde fisk i sjøen i til den første generasjon 8.203 ton (Jörundsdóttir pers medd.).
2.3 Tidligere undersøkelser

Eyri er ny lokalitet og Akvaplan-niva AS foretar derfor en forundersøkelse på lokaliteten av type B/C (NS 9410). I tillegg utføres ASC-undersøkelse gjennomført i kombinasjon med en C-undersøkelse.
3 Materiale og metode

3.1 Faglig program

Valg av undersøkelsesparametere, stasjonsplasseringer og type innsamlingsprogram for bunnprøvetakinger og andre registreringer er gjort i henhold til ASC-standarden og NS 9410 (C-undersøkelser). En oversikt over planlagt faglig program er gitt i Tabell 1.

For gjennomføring og opparbeiding er gjeldende standarder og kvalitetssikringssystemer benyttet (se Vedlegg 1 og 2).

<table>
<thead>
<tr>
<th>Stasjon</th>
<th>Type analyse/parametere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ey 1 (anleggssone, innenfor AZE)</td>
<td>Kvantitativ bunndyrsanalyse. TOC. Korn. TOM. TN. Cu. pH/Eh.</td>
</tr>
<tr>
<td>Ey 2 (overgangssone, fjernstasjon utenfor AZE)</td>
<td>Kvantitativ bunndyrsanalyse. TOC. Korn. TOM. TN. 2 x Cu. pH/Eh.</td>
</tr>
<tr>
<td>Ey 3 (overgangssone, utenfor AZE)</td>
<td>Kvantitativ bunndyrsanalyse. TOC. Korn. TOM. TN. 2 x Cu. pH/Eh.</td>
</tr>
<tr>
<td>Ey 5 (anleggssone, innenfor AZE)</td>
<td>Kvantitativ bunndyrsanalyse. TOC. Korn. TOM. TN. pH/Eh.</td>
</tr>
<tr>
<td>Ey 6 (overgangssone, utenfor AZE)</td>
<td>Kvantitativ bunndyrsanalyse. TOC. Korn. TOM. TN. pH/Eh.</td>
</tr>
<tr>
<td>Ey 7 (overgangssone, utenfor AZE)</td>
<td>Kvantitativ bunndyrsanalyse. TOC. Korn. TOM. TN. pH/Eh.</td>
</tr>
<tr>
<td>Cu ref 1 (= Ey 7)</td>
<td>2 x Cu</td>
</tr>
<tr>
<td>Cu ref2 (referansestasjon ASC)</td>
<td>2 x Cu</td>
</tr>
</tbody>
</table>

Feltarbeidet ble gjennomført 17.05.2018.

3.2 Valg av ASC-stasjoner og AZE

ASC-standarden tar rede for en AZE sone (Allowable Zone of Effect) på 30 m rundt anlegget som ble anvendt ved denne undersøkelsen.

Med bakgrunn i prøvetakingssystem i punkt 2.1 i ASC «audit manual» («request to allow for sampling at different locations and/or changes in total number of samples») er det samlet inn prøver fra fem biologiske prøvetakingsstasjoner.

Stasjonsposisjonene er gjort på bakgrunn av strømmålinger gjennomført på spredningsdyp (15 m) ved lokaliteten (Heggem 2017).

Koordinater, dyp og stasjonsnettet for prøvetaking er vist i Tabell 2 og Figur 2.

<table>
<thead>
<tr>
<th>Stasjon</th>
<th>Dyp, m</th>
<th>Avstand merd, m</th>
<th>Posisjon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ey 1</td>
<td>54</td>
<td>25</td>
<td>N 65°34,786 – V 23°59,156</td>
</tr>
<tr>
<td>Ey 2</td>
<td>45</td>
<td>500</td>
<td>N 65°34,957 – V 23°59,620</td>
</tr>
<tr>
<td>Ey 3</td>
<td>55</td>
<td>100</td>
<td>N 65°34,816 – V 23°59,224</td>
</tr>
<tr>
<td>Ey 4</td>
<td>61</td>
<td>500</td>
<td>N 65°34,397 – V 23°59,958</td>
</tr>
<tr>
<td>Ey 5</td>
<td>54</td>
<td>25</td>
<td>N 65°34,696 – V 23°58,189</td>
</tr>
<tr>
<td>Ey 6</td>
<td>53</td>
<td>100</td>
<td>N 65°34,632 – V 23°58,126</td>
</tr>
<tr>
<td>Ey 7/Cu ref1</td>
<td>42</td>
<td>1000</td>
<td>N 65°35,147 – V 24°00,081</td>
</tr>
<tr>
<td>Cu ref2</td>
<td>53</td>
<td>750</td>
<td>N 65°34,402 – V 24°57,538</td>
</tr>
</tbody>
</table>

4 ASC-undersøkelse Eyri

4.1 Resultater

4.1.1 Sedimentbeskrivelser og redoksmålinger (Eh)
Tabell 3 viser sedimentbeskrivelsene og resultatene redoksmålingene på stasjonene. Eh viste positive verdier på alle stasjonene.

<table>
<thead>
<tr>
<th>St.*</th>
<th>Sedimentbeskrivelse</th>
<th>Eh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ey 1</td>
<td>Leire/silt</td>
<td>155</td>
</tr>
<tr>
<td>Ey 2</td>
<td>Leire/skjellsand</td>
<td>162</td>
</tr>
<tr>
<td>Ey 3</td>
<td>Leire/silt</td>
<td>156</td>
</tr>
<tr>
<td>Ey 4</td>
<td>Leire/silt</td>
<td>151</td>
</tr>
<tr>
<td>Ey 5</td>
<td>Leire/silt</td>
<td>156</td>
</tr>
<tr>
<td>Ey 6</td>
<td>Leire/silt</td>
<td>155</td>
</tr>
<tr>
<td>Ey 7/Cu ref 1</td>
<td>Leire/silt/skjellsand</td>
<td>161</td>
</tr>
<tr>
<td>Cu ref2</td>
<td>Leire/silt</td>
<td>155</td>
</tr>
</tbody>
</table>

4.1.2 Kobber i sedimenter
Kobbernivåene i sedimentene er vist i Tabell 4. Kobberkonsentrasjonene varierte fra 28,8 til 40,0 mg/kg TS i sedimentet på stasjonene.

Tabell 4. Kobber (Cu), mg/kg TS. ASC Eyri, 2018.

<table>
<thead>
<tr>
<th>St.</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ey 1-1</td>
<td>33,6</td>
</tr>
<tr>
<td>Ey 2-1</td>
<td>28,8</td>
</tr>
<tr>
<td>Ey 2-2</td>
<td>35,0</td>
</tr>
<tr>
<td>Ey 3-1</td>
<td>32,3</td>
</tr>
<tr>
<td>Ey 3-2</td>
<td>38,1</td>
</tr>
<tr>
<td>Ey 4-1</td>
<td>34,7</td>
</tr>
<tr>
<td>Ey 4-2</td>
<td>30,2</td>
</tr>
<tr>
<td>Ey 5-1</td>
<td>-</td>
</tr>
<tr>
<td>Ey 5-2</td>
<td>-</td>
</tr>
<tr>
<td>Cu ref1-1</td>
<td>40,0</td>
</tr>
<tr>
<td>Cu ref1-2</td>
<td>33,4</td>
</tr>
<tr>
<td>Cu ref2-1</td>
<td>35,4</td>
</tr>
<tr>
<td>Cu ref2-2</td>
<td>35,2</td>
</tr>
</tbody>
</table>

4.1.3 Kvantitative bunndyanalyser

4.1.3.1 Artsmangfold – Shannon Wiener diversitetsindeks (H’).
Diversitetsindeksen Shannon-Wiener (H’) for bløtbunnsamfunnene er presentert i Tabell 5. Her vises også antall arter og individer på hver av stasjonene. De øvrige faunaindeksene i henhold til Veileder 02:2013 finnes i Vedlegg 3.

Antall individ varierte fra 125 (Ey 5) til 545 (Ey 4) og antall arter fra 15 (Ey 5) til 51 (Ey 2). Diversiteten H’ varierte fra 2,15 til 4,21.
Tabell 5. Antall arter og individer pr. 0,2 m². $H' = \text{Shannon-Wieners diversitetsindeks.}$ ASC-stasjoner ved Eyri, 2018.

<table>
<thead>
<tr>
<th>St.</th>
<th>Individtall</th>
<th>Ant. arter</th>
<th>H'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ey 1</td>
<td>343</td>
<td>22</td>
<td>2,50</td>
</tr>
<tr>
<td>Ey 2</td>
<td>381</td>
<td>51</td>
<td>4,21</td>
</tr>
<tr>
<td>Ey 3</td>
<td>277</td>
<td>20</td>
<td>2,47</td>
</tr>
<tr>
<td>Ey 4</td>
<td>545</td>
<td>35</td>
<td>2,99</td>
</tr>
<tr>
<td>Ey 5</td>
<td>125</td>
<td>15</td>
<td>2,15</td>
</tr>
</tbody>
</table>

4.1.3.2 ASC vurdering av bunndyrsamfunnet på Ey 1 og Ey 5 ved anlegget

Under er det gjort en vurdering av hvorvidt bløtbunnsamfunnet på anleggssonestasjonene innenfor AZE (stasjon Ey 1 og Ey 5) oppfylte følgende krav fra ASC-standarden:

"2 highly abundant* taxa that are not pollution indicator species"

*Highly abundant: Greater than 100 organisms per square meter (or equally high to reference site (S) if abundance is lower than this level)

Det var hhv. fire og to taksa med mer enn 100 ind./m² på de to stasjonene og ingen av disse er forurensningsindikator.

Tabell 6. Dominerende taksa med individantall per m² på Ey 1 og Ey 5, Eyri, 2018.

<table>
<thead>
<tr>
<th>Stasjon</th>
<th>Taksa</th>
<th>Antall per 0,2 m²</th>
<th>Antall per m²</th>
<th>NSI Økologisk gruppe*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ey 1</td>
<td>Ennucula tenuis</td>
<td>174</td>
<td>870</td>
<td>II</td>
</tr>
<tr>
<td>Ey 1</td>
<td>Galatowenia oculata</td>
<td>54</td>
<td>270</td>
<td>III</td>
</tr>
<tr>
<td>Ey 1</td>
<td>Sternaspis scutata</td>
<td>26</td>
<td>130</td>
<td>Ik</td>
</tr>
<tr>
<td>Ey 1</td>
<td>Cossura longicirrata</td>
<td>23</td>
<td>115</td>
<td>IV</td>
</tr>
<tr>
<td>Ey 5</td>
<td>Ennucula tenuis</td>
<td>47</td>
<td>235</td>
<td>II</td>
</tr>
<tr>
<td>Ey 5</td>
<td>Galatowenia oculata</td>
<td>44</td>
<td>220</td>
<td>III</td>
</tr>
</tbody>
</table>

4.1.3.3 NS 9410 Vurdering av bunndyrsamfunnene i anleggssonen/AZE.

I følge NS 9410 kan klassifisering av miljøtilstanden i anleggssonen også baseres på antallet arter vurdert mot dominansforhold i bunndyrsamfunnet (se kapt. 8.6.2 i NS 9410:2016).

Bløtbunnsamfunnene på stasjon Ey 1 og Ey 5 ble klassifisert til miljøtilstand 1 "Meget god" for Ey1 og 2 "God" for Ey5 (Tabell 7). Kriteriet for karakterisering til miljøtilstand 1 er tilstedeværelse av minst 20 arter, hvorav ingen skal utgjøre mer enn 65 %. På Ey5 var det 15 arter tilstede.

<table>
<thead>
<tr>
<th>Stasjon</th>
<th>Lokalitet</th>
<th>Ant. arter</th>
<th>Dominerende taksa - %</th>
<th>Miljøtilstand-NS 9410</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ey 1</td>
<td>Eyri</td>
<td>22</td>
<td>Ennucula tenuis – 49 %</td>
<td>1 – Meget god</td>
</tr>
<tr>
<td>Ey 5</td>
<td>Eyri</td>
<td>15</td>
<td>Ennucula tenuis – 37 %</td>
<td>2 - God</td>
</tr>
</tbody>
</table>
5 C-undersøkelse Eyri

5.1 Innledning

Klassifiseringsgrenser for tilstandsklassifisering av de enkelte parametere og faunaindekser er vist i Vedlegg 1.

Det er ikke utviklet klassifiseringsgrenser for denne type undersøkelser ved kysten av Island og klassifisering av sediment- og faunatilstand tilsvarende det som utføres i Norge er derfor ikke utført. Imidlertid er resultater med de samme indeksene som brukes i Norge gitt her, men det gjøres oppmerksom på at noen av disse (f. eks. NSI) er utviklet for norske forhold. For nærmere beskrivelse av indeksene vises det til Vedlegg 1 og Miljødirektoratets Veileder 02:2013.

5.2 Faglig program og stasjonsutvelgelse

<table>
<thead>
<tr>
<th>Stasjon</th>
<th>Type undersøkelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ey 1</td>
<td>Kvantitativ bunndyrsanalyse. TOC. Korn. TOM. TN. Cu. pH/Eh.</td>
</tr>
<tr>
<td>Ey 2</td>
<td>Kvantitativ bunndyrsanalyse. TOC. Korn. TOM. TN. pH/Eh.</td>
</tr>
<tr>
<td>Ey 3</td>
<td>Kvantitativ bunndyrsanalyse. TOC. Korn. TOM. pH/Eh.</td>
</tr>
<tr>
<td>Ey 4</td>
<td>Kvantitativ bunndyrsanalyse. TOC. Korn. TOM. pH/Eh. Hydrograf/Ø2.</td>
</tr>
<tr>
<td>Ey 5</td>
<td>Kvantitativ bunndyrsanalyse. TOC. Korn. TOM. pH/Eh.</td>
</tr>
<tr>
<td>Ey 6</td>
<td>Kvantitativ bunndyrsanalyse. TOC. Korn. TOM. pH/Eh.</td>
</tr>
<tr>
<td>Ey 7</td>
<td>Kvantitativ bunndyrsanalyse. TOC. Korn. TOM. pH/Eh.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stasjon</th>
<th>Dyp, m</th>
<th>Avstand merd, m</th>
<th>Posisjon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ey 1</td>
<td>54</td>
<td>25</td>
<td>N 65°34,786 – V 23°59,156</td>
</tr>
<tr>
<td>Ey 2</td>
<td>45</td>
<td>500</td>
<td>N 65°34,957 – V 23°59,620</td>
</tr>
<tr>
<td>Ey 3</td>
<td>55</td>
<td>100</td>
<td>N 65°34,816 – V 23°59,224</td>
</tr>
<tr>
<td>Ey 4</td>
<td>61</td>
<td>500</td>
<td>N 65°34,397 – V 23°59,958</td>
</tr>
<tr>
<td>Ey 5</td>
<td>54</td>
<td>25</td>
<td>N 65°34,696 – V 23°58,189</td>
</tr>
<tr>
<td>Ey 6</td>
<td>53</td>
<td>100</td>
<td>N 65°34,632 – V 23°58,126</td>
</tr>
<tr>
<td>Ey 7</td>
<td>42</td>
<td>1000</td>
<td>N 65°35,147 – V 24°00,081</td>
</tr>
</tbody>
</table>
5.3 Resultater

5.3.1 Hydrografi

Den hydrografiske vertikalprofilen for Ey 4 er vist i Figur 4. Temperaturen lå rundt 4 °C fra overflaten til bunnen og oksygenmetningen fra 90 til 85 % ved samme dyp. Det ble ikke registrert noe sprangsjikt i vannsøylen i mai 2018.

5.3.2 TOC, TOM, TN, C/N, kornfordeling og pH/Eh

Nivåer av total organisk materiale (TOM), total organisk karbon (TOC), total nitrogen (TN), C/N-forholdet, kornfordeling og pH/Eh i sedimentene er presentert i Tabell 10.
TOM-nivåene var høye med verdier mellom 9,2 og 15,0 %. TN-nivåene var lave (4,9 – 6,8 mg/g) og det samme var C/N-forholdene. TOC var litt forhøyet på alle stasjonene og nTOC lå rundt 30 mg/g TS. Sedimentene var moderat fin- til meget finkornet med pelittandel mellom 54,6 og 96,4 %.

Redoksmålingene (pH/Eh) ga poeng 0 iht. Tillegg D i NS 9410:2016 for alle stasjonene.

Tabell 10. Sedimentbeskrivelse, TOM (%), TOC(mg/g), TN (mg/g), C/N, kornfordeling (pelittandel % <0,063 mm) og pH/Eh. Eyri, 2018.

<table>
<thead>
<tr>
<th>St.</th>
<th>Sedimentbeskrivelse</th>
<th>TOM</th>
<th>TOC</th>
<th>nTOC*</th>
<th>TN</th>
<th>C/N</th>
<th>Pelitt</th>
<th>pH/Eh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ey 1</td>
<td>Leire/silt</td>
<td>14,9</td>
<td>28,8</td>
<td>30,0</td>
<td>6,6</td>
<td>4,4</td>
<td>93,5</td>
<td>7,5/ 155</td>
</tr>
<tr>
<td>Ey 2</td>
<td>Leire/skjellsand</td>
<td>10,8</td>
<td>20,5</td>
<td>27,8</td>
<td>4,9</td>
<td>4,2</td>
<td>42,2</td>
<td>59,4</td>
</tr>
<tr>
<td>Ey 3</td>
<td>Leire/silt</td>
<td>14,5</td>
<td>28,3</td>
<td>29,1</td>
<td>6,0</td>
<td>4,7</td>
<td>95,6</td>
<td>7,8/ 156</td>
</tr>
<tr>
<td>Ey 4</td>
<td>Leire/silt</td>
<td>14,0</td>
<td>28,1</td>
<td>30,2</td>
<td>6,2</td>
<td>4,5</td>
<td>83,8</td>
<td>7,8/151</td>
</tr>
<tr>
<td>Ey 5</td>
<td>Leire/silt</td>
<td>14,9</td>
<td>29,2</td>
<td>29,8</td>
<td>6,8</td>
<td>4,3</td>
<td>96,4</td>
<td>7,8/156</td>
</tr>
<tr>
<td>Ey 6</td>
<td>Leire/silt</td>
<td>15,0</td>
<td>29,7</td>
<td>30,7</td>
<td>6,5</td>
<td>4,6</td>
<td>94,5</td>
<td>7,8/155</td>
</tr>
<tr>
<td>Ey 7</td>
<td>Leire/silt/skjellsand</td>
<td>9,2</td>
<td>22,1</td>
<td>30,3</td>
<td>5,3</td>
<td>4,2</td>
<td>54,6</td>
<td>7,7/161</td>
</tr>
</tbody>
</table>

* Tilstandsclassifisering (Veileder 02:2013 rev 2015) basert på TOC forutsetter at konsentrasjonen av TOC i sedimentet standardisieres for teoretisk 100 % finstoff (pelitt < 0,063 mm) iht. til formelen: Normalisert TOC = målt TOC + 18 x (1-F), hvor F er andel av finstoff (Aure m.fl., 1993).

5.3.3 Kobber

Kobbernivået i sedimentet på stasjon Ey 1 er presentert i Tabell 11. Nivået var 33,6 mg/kg TS.

Tabell 11. Sedimentanalyser. Kobber (Cu) i mg/kg TS. C-stasjon ved Eyri, 2018.

<table>
<thead>
<tr>
<th>St.</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ey 1</td>
<td>33,6</td>
</tr>
</tbody>
</table>

5.3.4 Bløtbunnfauna

5.3.4.1 Faunaindeks og økologisk tilstandsclassifisering

Resultatene fra de kvantitative bunndyrsanalyseene på C-stasjonene er presentert i Tabell 12. Faunaindeksen nEQR i tabellen er presentert uten tetthetsindeksen DI etter anbefaling fra Miljødirektoratet.

Antall individer varierer fra 125 (Ey 5) til 545 (Ey 4) og antall arter fra 15 (Ey 15) til 51 (Ey 2). På Ey 2, Ey 4 og Ey 7 var den samlede indeksen nEQR over 0,6 som kan karakteriseres som god faunatilstand. På de fire andre stasjonene lå denne indeksen mellom 0,4 og 0,6 som indikerer moderat belastete samfunn. Diversitetsindeksen H’ var god på Ey 2 og Ey 7 og moderate på de øvrige stasjonene.

J (Pielous jevnhetsindeks) er et mål på hvor likt individene er fordelt mellom artene, og vil variere mellom 0 og 1. En stasjon med lav verdi har en ”skjev” individfordeling mellom artene, og indikerer at bunndyrssamfunnet er forstyrret. Indeksen varierte fra 0,63 til 0,81 noen som indikerer forholdsvis jevn fordeling.

<table>
<thead>
<tr>
<th>St.</th>
<th>Ant. ind.</th>
<th>Ant. arter</th>
<th>H'</th>
<th>ES_{100}</th>
<th>$NQII$</th>
<th>ISI_{2012}</th>
<th>NSI</th>
<th>$nEQR$</th>
<th>DI</th>
<th>AMBI</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ey 1</td>
<td>343</td>
<td>22</td>
<td>2,50</td>
<td>12,3</td>
<td>0,628</td>
<td>7,50</td>
<td>21,8</td>
<td>0,569</td>
<td>0,16</td>
<td>2,32</td>
<td>0,66</td>
</tr>
<tr>
<td>Ey 2</td>
<td>381</td>
<td>51</td>
<td>4,21</td>
<td>29,2</td>
<td>0,726</td>
<td>8,96</td>
<td>21,8</td>
<td>0,718</td>
<td>0,22</td>
<td>2,39</td>
<td>0,80</td>
</tr>
<tr>
<td>Ey 3</td>
<td>277</td>
<td>20</td>
<td>2,47</td>
<td>13,4</td>
<td>0,615</td>
<td>7,48</td>
<td>21,1</td>
<td>0,564</td>
<td>0,09</td>
<td>2,63</td>
<td>0,63</td>
</tr>
<tr>
<td>Ey 4</td>
<td>545</td>
<td>35</td>
<td>2,99</td>
<td>15,5</td>
<td>0,670</td>
<td>8,13</td>
<td>20,8</td>
<td>0,618</td>
<td>0,38</td>
<td>2,32</td>
<td>0,65</td>
</tr>
<tr>
<td>Ey 5</td>
<td>125</td>
<td>15</td>
<td>2,15</td>
<td>11,0</td>
<td>0,615</td>
<td>6,87</td>
<td>21,8</td>
<td>0,525</td>
<td>0,25</td>
<td>2,38</td>
<td>0,64</td>
</tr>
<tr>
<td>Ey 6</td>
<td>193</td>
<td>19</td>
<td>2,61</td>
<td>12,4</td>
<td>0,626</td>
<td>7,13</td>
<td>20,9</td>
<td>0,554</td>
<td>0,15</td>
<td>2,42</td>
<td>0,70</td>
</tr>
<tr>
<td>Ey 7</td>
<td>445</td>
<td>49</td>
<td>4,16</td>
<td>26,8</td>
<td>0,701</td>
<td>8,65</td>
<td>21,6</td>
<td>0,699</td>
<td>0,29</td>
<td>2,58</td>
<td>0,81</td>
</tr>
</tbody>
</table>

5.3.4.2 NS 9410 Vurdering av bunndyrsamfunnet på Hr1 ved anlegget.

I følge NS 9410 kan klassifisering av miljøtilstanden i anleggssonen også baseres på antallet arter vurdert mot dominansforhold i bunndyrsamfunnet (se kapt. 8.6.2 i NS 9410:2016).

Bløtbunnsamfunnene på stasjon Ey 1 og Ey 5 ble klassifisert til miljøtilstand 1 "Meget god" for Ey1 og 2 "God" for Ey5. Kriteriet for karakterisering til miljøtilstand 1 er tilstedeværelse av minst 20 arter, hvorav ingen skal utgjøre mer enn 65 %. På Ey5 var det 15 arter tilstede. (Tabell 13). Data for antall arter og dominerende taksa på anleggssonestasjonen er hentet fra Tabell 12 og Tabell 14.

<table>
<thead>
<tr>
<th>Stasjon</th>
<th>Lokalitet</th>
<th>Ant. arter</th>
<th>Dominerende taksa</th>
<th>Miljøtilstand-NS 9410</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ey 1</td>
<td>Eyri</td>
<td>22</td>
<td>Ennucula tenuis – 49 %</td>
<td>1 – Meget god</td>
</tr>
<tr>
<td>Ey 5</td>
<td>Eyri</td>
<td>15</td>
<td>Ennucula tenuis – 37 %</td>
<td>2 - God</td>
</tr>
</tbody>
</table>

5.3.4.3 Geometriske klasser

Figur 5 viser antall arter plottet mot antall individer, der antallet individer er delt inn i geometriske klasser. Det vises til Vedlegg 3 for en forklaring av begrepet geometriske klasser.

Alle kurvene startet forholdsvis lavt (< 20 arter med ett individ) og strakk seg forholdsvis kort ut mot høyere klasser. Disse ga ingen klare indikasjoner på faunatilstanden.
5.3.4.4 Clusteranalyser

For å undersøke likheten i faunasammensetning mellom stasjonene ble den multivariate teknikken clusteranalyse benyttet. Resultatene fra denne er presentert i dendrogram i Figur 6.

Stasjonene ble skilt i to hovedgrupper med Ey 2 og Ey 7 i den ene gruppen og resten av stasjonene i den andre. Faunasammensetningen på Ey 5 og Ey 6 var 72 % lik og på Ey 1 og Ey 3 70 % lik. Disse fire stasjonene var 65 % lik hverandre. Faunasammensetningen på Ey 2 og Ey 7 var 60 % lik og de to hovedgruppene var 43 % lik hverandre.

5.3.4.5 Artssammensetning

På Ey1, Ey4, Ey5 og Ey6 dominerer den nøytrale muslingen *Ennucula tenuis* med hhv. 49, 32, 37 og 40 % av individene. De andre mest dominante artene på stasjonen var hovedsakelig en blanding av nøytrale, tolerante og opportunistiske arter.

På Ey2 og Ey7 dominerer den opportunistiske børstemarken *Maldane sarsi* med hhv. 21 og 18 % av individene. De andre mest dominante artene på stasjonen var hovedsakelig en blanding av nøytrale, tolerante og opportunistiske arter.
På Ey3 dominerte den tolerante børstemarken *Galathowenia oculata* med 33 % av individene. De andre mest dominerande artene på stasjonen var hovedsakelig en blanding av nøytrale, tolerante og opportunistiske arter.

Det ble ikke registrert forurensningsindikatorer på noen av stasjonene.

<table>
<thead>
<tr>
<th>Ant.</th>
<th>Kum.</th>
<th>EG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ennucula tenuis</td>
<td>174</td>
<td>49 %</td>
</tr>
<tr>
<td>Galathowenia oculata</td>
<td>54</td>
<td>65 %</td>
</tr>
<tr>
<td>Sternaspis scutata</td>
<td>26</td>
<td>72 %</td>
</tr>
<tr>
<td>Cossura longocirrata</td>
<td>23</td>
<td>79 %</td>
</tr>
<tr>
<td>Chaetozone sp.</td>
<td>13</td>
<td>82 %</td>
</tr>
<tr>
<td>Nephtys ciliata</td>
<td>11</td>
<td>90 %</td>
</tr>
<tr>
<td>Prionospio steenstrupi</td>
<td>8</td>
<td>90 %</td>
</tr>
<tr>
<td>Leucon sp.</td>
<td>4</td>
<td>90 %</td>
</tr>
</tbody>
</table>

5.4 Sammenfattende vurderinger – C-undersøkelse

5.4.1 Sammenfatning
Resultatene fra miljøovervåkingen (type C) ved Eyri, 2018, kan sammenholdes som følger:

- Hydrografimålingen viste gode oksygenforhold i hele vannsøylen i mai 2018.
- TOC var litt forhøyet på alle stasjonene og nTOC lå rundt 30 mg/g TS. TOM-nivåene var høye mens TN var lave i sedimentene fra alle stasjonene og det samme var C/N-forholdet. Kobbernivået på Ey1 var høyst (33,6 mg/kg). Sedimentene var moderat fin til meget finkornet med pelittandel mellom 54,6 og 96,4 %. Redoks-verdiene i sedimentet var positive for alle stasjonene.
- Antall individ varieer fra 125 (Ey 5) til 545 (Ey 4) og antall arter fra 15 (Ey 15) til 51 (Ey 2). På Ey 2, Ey 4 og Ey 7 var den samlede indeksen nEQR over 0,6 som kan karakteriseres som god faunatilstand. På de fire andre stasjonene lå denne indeksen mellom 0,4 og 0,6 som indikerer moderat belastet samfunn. NS 9410:2016-vurdering av samfunnet i anleggssonen viste miljøtilstand 1 (Meget god) for Ey1 og tilstand 2 (God) for Ey5. Det ble ikke registrert forurensningsindikatorer blant topp-10 på noen av stasjonene.

5.4.2 Konklusjon
Resultatene fra overvåkingen ved oppdrettslokaliteten Eyri i 2018 viste at sedimentene var noe belastet med organisk karbon og kobberkonsentrasjonen var noe forhøyet på Ey1. Det ble registrert belastningseffekt på stasjon Ey1, Ey3, Ey5 og Ey6 og samlet faunaindeks nEQR viste moderat påvirkning her. For de andre stasjonene viste nEQR god faunatilstand. Diversiteten H' var over 4 på Ey2 og Ey7 og under 3 på de andre stasjonene. NS 9410:2016-vurdering av samfunnet i anleggssonen viste miljøtilstand 1 (Meget god) for Ey1 og tilstand 2 (God) for Ey5. Det ble ikke registrert forurensningsindikatorer blant topp-10 på noen av stasjonene. Redoksverdiene i sedimentet var positive for alle stasjonene.
6 Referanser

Pers. medd. Þóra Dögg Jörundsdóttir, Quality Manager Hatchery & Farms, Arnarlax hf
Vedlegg 1. Metodebeskrivelser og klassifiseringssystemer

Hydrografi og oksygen
I henhold til NS 9410 ble det gjennomført hydrografiske registreringer for vertikalprofilen med hensyn til saltholdighet, temperatur, tettet og oksygenmetning fra overflate til bunn på den dypeste stasjonen. Målingene ble gjennomført ved hjelp av en Sensordata CTDO 202 sonde.

Geokjemiske analyser

Feltinnsamlinger
Prøvene ble hentet med en 0,1 m² grabb (van Veen). Prøvematerialet ble tatt ut gjennom inspeksjonsluker etter at sedimentoverflaten var godkjent. Prøver for TOC, TOM, TN og Cu ble tatt av fra overste 1 cm av sedimentet, og for kornfordeelsesanalyser fra de øverste 5 cm ved hjelp av rør. Kun prøver med uforstyrret overflate ble godkjent og prøvematerialet ble froset for videre bearbeidelse i laboratorium.

Total organisk materiale (TOM)
Mengden av TOM i sediment ble bestemt ved vekttap etter forbrenning ved 495 °C. Vekttapet i prosent etter forbrenning ble beregnet. Reproduuserbarheten av TOM-analyserne er sjekket i opparbeidingsperioden ved å bruke et husstandardsediment som inneholder TOM med kjent nivå. Standard kalsiumkarbonat ble brent sammen med prøvene som kontroll på at karbonat ikke ble forbrent i prosessen.

Total nitrogen (TN) - Kjeldahl nitrogenbestemmelse

Totalt organisk karbon (TOC) og kornfording
Andelen finstoff, dvs. fraksjonen mindre enn 63 μm, ble bestemt gravimetrisk etter våtsikting av prøvene. Resultatene er angitt som andel finstoff på tørrveksbasis.

Etter tørking ble innhold av totalt organisk karbon (TOC) bestemt ved IR deteksjon (LECO IR 212) etter behandling med konsentrert saltsyre (HCl) og katalytisk forbrenning ved 480 °C. For å kunne klassifisere miljøtilstanden basert på uforstyrret TOC verdi (TNTOC) ved bruk av ligningen: TNTOC = TOC + 18(1 – F), hvor TOC og F står for henholdsvis målt TOC verdi og andel finstoff (%) i prøven (Aure m.fl., 1993).

Klassifisering av miljøtilstanden for sedimentene er basert på normalisert TOC, og ble gjennomført i henhold til Veileder 02:2013 rev. 2015.

Tilstandsklassifisering for organisk innhold i marine sediment.

<table>
<thead>
<tr>
<th>nTOC, mg/g</th>
<th>< 20</th>
<th>20 - 27</th>
<th>27 - 34</th>
<th>34 - 41</th>
<th>> 41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klasse</td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
</tr>
<tr>
<td>Svært god</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>God</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dårlig</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V Svært dårlig</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kobber (Cu)

Prøven for metallanalyse ble frysetørket før den ble oppløttet i mikrobølgeovn i lukket teflonbeker med konserntetrularen salpetersyre og hydrogenperoksid. Konsentrasjonene av kobber (Cu) ble bestemt ved hjelp av ICP-SFMS.

Klassifisering av miljøtilstanden med hensyn til Cu ble gjennomført i en tidligere rapport (Aure m.fl., 2016).

Tilstandsklassifisering for kobber (Cu) i marine sediment.

<table>
<thead>
<tr>
<th>Cu mg/kg</th>
<th>< 20</th>
<th>20 - 84</th>
<th>84 - 147</th>
<th>> 147</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klasse I</td>
<td></td>
<td>Klasse II</td>
<td>Klasse IV</td>
<td>Klasse V</td>
</tr>
</tbody>
</table>

Redoks- og pH målinger
Det ble utført en kvantitativ kjemisk undersøkelse av sedimentet. Surhetsgrad (pH) og redoksapotential (Eh) ble målt ved hjelp av elektroder og instrumentet YSI Professional Plus. I hht. manual for instrumentet ble 200 mV lagt til den målte ORP-verdien (Oxydation Reduction Potential).

Bunndyr

Om organisk påvirkning av bunndyrssamfunn

Innsamling og fiksering

Alle bunndyrprøvene ble tatt med en 0,1 m² van Veen grabb. Kun grabbskudd hvor grabben var fullstendig lukket og overflaten uforstyrret ble godkjent. Etter godkjenning ble innholdet vasket i en 1 mm sikt og gjenværende matere fikkert med 4 % formalin tilsatt fargestoffet bengalrosa og nøytralisert med boraks. På laboratoriet ble dyrene sortert ut frå gjenvervende sediment.

Kvantitative bunndysanalyser

Indeks

<table>
<thead>
<tr>
<th>Indeks</th>
<th>I Svært god</th>
<th>II God</th>
<th>III Moderat</th>
<th>IV Dårlig</th>
<th>V Svært dårlig</th>
</tr>
</thead>
<tbody>
<tr>
<td>NQI1</td>
<td>0,9 - 0,82</td>
<td>0,82 - 0,63</td>
<td>0,63 - 0,49</td>
<td>0,49 - 0,31</td>
<td>0,31 - 0</td>
</tr>
<tr>
<td>H⁻</td>
<td>5,7 - 4,8</td>
<td>4,8 - 3,0</td>
<td>3,0 - 1,9</td>
<td>1,9 - 0,9</td>
<td>0,9 - 0</td>
</tr>
<tr>
<td>ES₁₀₀</td>
<td>50 - 34</td>
<td>34 - 17</td>
<td>17 - 10</td>
<td>10 - 5</td>
<td>5 - 0</td>
</tr>
<tr>
<td>IS₁₀₀₂</td>
<td>13 - 9,6</td>
<td>9,6 - 7,5</td>
<td>7,5 - 6,2</td>
<td>6,1 - 4,5</td>
<td>4,5 - 0</td>
</tr>
<tr>
<td>NSI</td>
<td>31 - 25</td>
<td>25 - 20</td>
<td>20 - 15</td>
<td>15 - 10</td>
<td>10 - 0</td>
</tr>
<tr>
<td>DI</td>
<td>0 - 0,30</td>
<td>0,30 - 0,44</td>
<td>0,44 - 0,60</td>
<td>0,60 - 0,85</td>
<td>0,85 - 2,05</td>
</tr>
<tr>
<td>nEQR</td>
<td>1,0 - 0,8</td>
<td>0,8 - 0,6</td>
<td>0,6 - 0,4</td>
<td>0,4 - 0,2</td>
<td>0,2 - 0</td>
</tr>
</tbody>
</table>

Det er også utført en samlet tilstandsklassifisering for stasjonene i overgangssonen i hht. kapt. 8.7 i NS9419:2016. Stasjonene C1 og C2 er ikke mer i denne beregningen.
Bunndyrsamfunnet i anleggssonen ble også vurdert i henhold til NS 9410 klassifisering av miljøtilstand, basert på antallet arter og dominansforhold (C-undersøkelsen). I tillegg ble det gjort en vurdering av hvorvidt bunndyrsamfunnene på anleggssonestasjonen oppfylte følgende krav fra ASC-standarden (ASC-undersøkelsen):

"2 highly abundant* taxa that are not pollution indicator species"

*Highly abundant: Greater than 100 organisms per square meter (or equally high to reference site (S) if abundance is lower than this level)

Referanser

Vedlegg 2. Prosedyre for beregning av AZE

I ASC-undersøkelser skal det fastlegges AZE (Allowable Zone of Effect) rundt oppdrettsanlegg som danner utgangspunkt for valg av prøvestasjonsnett. I standarden, som ble laget for skotske forhold, står det at den skal være 30 meter fra merdkanten. På grunn av store dyp og sterk strøm blir dette ikke riktig avstand for norske forhold.

ASC-standarden tillater at en fastlegger en lokalitetsavhengig AZE (site specific AZE). Det er laget en intern AZE kalkulator til formålet for Akvaplan-niva.

Beregning av "site specific" AZE:

På grunn av påvirkning fra strøm og vind og lange fortøyningsliner er oppdrettsanlegg på svai. En må derfor regne med at fôrpartikler og fiskeavføring vil havne på bunnen i det området der anlegget befinner seg på svai. En AZE må inkludere dette område. Svai legges til 20 % av dybde, f.eks. for et anlegg med størst dybde på 100 m legges det inn en mulig svai på 20 m i hver retning. Tallet er tidligere brukt av Fiskeridirektoratet ved kontroll av anleggets koordinater. Det stemmer også overens med oppgitt strekk (inntil 10 %) og elastisitet fra fortøyningsliner.

Videre vil enhver lokalitet ha et eget påvirkningsmønster fra fôrpartikler og fiskeavføring som havner på bunnen, ofte kalt lokalitetens fotavtrykk, som bestemmes av dybde, partiklenes synkehastighet og lokalitetens strømforhold. Forventet utstrekning (L) av påvirkningsområdet kan beregnes ved å dele dybde (D) med synkehastighet (V_f) og gange med gjennomsnittlig strømhastighet (V_s) på spredningsstrøm. Synkehastighet er satt til 7,5 cm/s utfra Bannister et al (2016) sin vitenskapelige artikkelen der resultatet fra forsøkene var at mellom 60 og 80 % av all feces synker med en hastighet mellom 5 og 10 cm/s.

\[L = \frac{D}{V_f} \]

Eksempel 100 m dybde, 7,5 cm/s synkehastighet og 6 cm/s gjennomsnittlig spredningsstrøm

\[L = 10000 \text{cm}/7,5 \text{cm/s} = 80 \text{m}. \]

Med svai på 20% av 100 m = 20 m blir

AZE da L + svai = 80 m + 20 m = 100 m

D og (V_s) hentes fra lokalitetsrapport.

Referanse:

Vedlegg 3. Bunndyrstatistikk og artslister

Diversitetsmål

Shannon-Wieners indeks (Shannon & Weaver, 1949) er gitt ved formelen:

\[
H' = - \sum_{i=1}^{s} \frac{n_i}{N} \log_2 \left(\frac{n_i}{N} \right)
\]

der \(n_i = \text{antall individer av art } i \) i prøven
\(N = \text{total antall individer} \)
\(s = \text{antall arter} \)

Indeksen tar hensyn både til antall arter og mengdedefordelingen mellom artene, men det synes alsom indeksen er mest følsom for individfordelingen. En lav verdi indikerer et artsfattig samfunn og/eller et samfunn som er dominert av en eller få arter. En høy verdi indikerer et artsrikt samfunn.

Pielous mål for jevnhet (Pielou, 1966)

har følgende formel, der symbolene er som i Shannon-Wieners indeks

\[
J = \frac{H'}{\log_2 s}
\]

Hurlberts diversitetskurver

\[
ES_n = \sum_{i=1}^{s} \left[1 - \left(\frac{N_i}{n} \right)^{N/n} \right]
\]

der \(N = \text{total antall individ i prøven} \)
\(N_i = \text{antall individ av art } i \)
\(n = \text{antall individ i en gitt delprøve (av de } N \text{)} \)
\(s = \text{total antall arter i prøven} \)

Plott av antall arter i forhold til antall individer

Artene deles inn i grupper/klasser etter hvor mange individer som er registrert i en prøve. Det vanlige er å sette klasse I = 1 individ pr. art, klasse II = 2-3 individer, klasse III = 4-7 individer, klasse IV = 8-15 individer, osv., slik at de nedre klassegrensene danner en følge av ledd på formen \(2^x \), \(x = 0,1,2, \ldots \). En slik følge kalles en geometrisk følge, derfor kalles klassene for geometriske klasser. Hvis antall arter innenfor hver klasse plottes mot klasseverdi på en lineær skala, vil det fremkomme en kurve som uttrykker individfordelingen mellom artene i samfunnet. Det har vist seg at i prøver fra upåvirkede samfunn vil det være mange arter med lavt individantall og få arter med høyt individantall, slik at vi får en entoppen, asymmetrisk kurve med lang "hale" mot høy klasseverdi. Denne kurven vil være godt tilpasset en log-normal fordelingskurve.

normalfordelingskurven vil da ofte gjenoppstå, men med en lavere topp og spredt over flere klasser enn for uforstyrredes samfunn.

Faunaens fordelingsmønster

Variasjoner i faunaens fordelingsmønster over området beskrives ved å sammenligne tettheten av artene på hver stasjon. Til dette brukes multivariate klassifikasjons- og ordinasjons-analysere (Cluster og MDS).

Clusteranalyse

Analysen undersøker faunalikheten mellom prøver. For å sammenligne to prøver ble Bray-Curtis ulikhetsindeks benyttet (Bray & Curtis, 1957):

\[d_{ij} = \frac{\sum_{i=1}^{n} |X_{ki} - X_{kj}|}{\sum_{k=1}^{n} (X_{ki} + X_{kj})} \]

der \[n \] = antall arter sammenlignet
\[X_{ki} \] = antall individ av art \(k \) i prøve nr. \(i \)
\[X_{kj} \] = antall individ av art \(k \) i prøve nr. \(j \)

Indeksen avtar med økende likhet. Vi får verdien 1 hvis prøvene er helt ulike, dvs. ikke har noen felles arter. Identiske arts- og individtall vil gi verdi 0. Prøver blir gruppert sammen etter graden av likhet ved å bruke ”group-average linkage”. Forholdsvis like prøver danner en gruppe (cluster). Resultatet presenteres i et trediagram (dendrogram).

Ømfintlighet (AMBI, ISI og NSI)

NSI er en sensitivitetsindeks som ligner AMBI, men er utviklet med basis i norske faunadata og ved bruk av en objektiv statistisk metode. En prøves NSI verdi beregnes ved gjennomsnittet av sensitivitetsverdiene av alle individene i prøven.

Sammensatte indekser (NQI1 og NQI2)

Sammensatte indekser NQI1 og NQI2 bestemmes både ut fra artsmangfold og ømfintlighet. NQI1 er brukt i NEAGIG (den nordøst-atlantiske interkalibreringen). De fleste land bruker nå sammensatte indekser av samme type som NQI1 og NQI2.

NQI1 indeksen er beskrevet ved hjelp av formelen:

\[\text{NQI1 (Norwegian quality status, version 1) = [0.5* (1-AMBI/7) + 0.5*(SN/2.7)* (N/(N+5)]} \]

Diversitetsindeksen SN = lnS/ln(lnN), hvor S er antall arter og N er antall individer i prøven.

Referanser:

Statistikk resultater Eyri, 2018:

Antall arter og individer per stasjon

<table>
<thead>
<tr>
<th>st.nr.</th>
<th>tot.</th>
<th>Ey1</th>
<th>Ey2</th>
<th>Ey3</th>
<th>Ey4</th>
<th>Ey5</th>
<th>Ey6</th>
<th>Ey7</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. ind.</td>
<td>2309</td>
<td>343</td>
<td>381</td>
<td>277</td>
<td>545</td>
<td>125</td>
<td>193</td>
<td>445</td>
</tr>
<tr>
<td>no. spe.</td>
<td>82</td>
<td>22</td>
<td>51</td>
<td>20</td>
<td>35</td>
<td>15</td>
<td>19</td>
<td>49</td>
</tr>
</tbody>
</table>

Bunndyrindekser per replikat

<table>
<thead>
<tr>
<th>st.nr.</th>
<th>Ey1_01</th>
<th>Ey1_02</th>
<th>Ey2_01</th>
<th>Ey2_02</th>
<th>Ey3_01</th>
<th>Ey3_02</th>
<th>Ey4_01</th>
<th>Ey4_02</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. ind.</td>
<td>112</td>
<td>231</td>
<td>158</td>
<td>223</td>
<td>116</td>
<td>161</td>
<td>303</td>
<td>242</td>
</tr>
<tr>
<td>no. spe.</td>
<td>10</td>
<td>21</td>
<td>37</td>
<td>39</td>
<td>13</td>
<td>17</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>Shannon-Wiener:</td>
<td>2.4</td>
<td>2.6</td>
<td>4.4</td>
<td>4.0</td>
<td>2.2</td>
<td>2.8</td>
<td>2.8</td>
<td>3.1</td>
</tr>
<tr>
<td>Pielou</td>
<td>0.73</td>
<td>0.58</td>
<td>0.85</td>
<td>0.76</td>
<td>0.58</td>
<td>0.68</td>
<td>0.61</td>
<td>0.70</td>
</tr>
<tr>
<td>ES100</td>
<td>10</td>
<td>15</td>
<td>31</td>
<td>27</td>
<td>12</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>SN</td>
<td>1.48</td>
<td>1.80</td>
<td>2.23</td>
<td>2.17</td>
<td>1.65</td>
<td>1.74</td>
<td>1.85</td>
<td>1.84</td>
</tr>
<tr>
<td>ISI-2012</td>
<td>7.07</td>
<td>7.94</td>
<td>8.91</td>
<td>9.01</td>
<td>7.18</td>
<td>7.78</td>
<td>8.64</td>
<td>7.62</td>
</tr>
<tr>
<td>AMBI</td>
<td>2.397</td>
<td>2.25</td>
<td>2.562</td>
<td>2.218</td>
<td>2.379</td>
<td>2.886</td>
<td>2.44</td>
<td>2.2</td>
</tr>
<tr>
<td>NQI1</td>
<td>0.59</td>
<td>0.67</td>
<td>0.72</td>
<td>0.73</td>
<td>0.62</td>
<td>0.61</td>
<td>0.66</td>
<td>0.68</td>
</tr>
<tr>
<td>NSI</td>
<td>21.6</td>
<td>22.1</td>
<td>22.0</td>
<td>21.5</td>
<td>21.6</td>
<td>20.6</td>
<td>21.7</td>
<td>19.9</td>
</tr>
<tr>
<td>DI</td>
<td>0.001</td>
<td>0.314</td>
<td>0.149</td>
<td>0.298</td>
<td>0.014</td>
<td>0.157</td>
<td>0.431</td>
<td>0.334</td>
</tr>
</tbody>
</table>

Bunndyrindekser, gjennomsnitt per stasjon

<table>
<thead>
<tr>
<th>st.nr.</th>
<th>Ey5_01</th>
<th>Ey5_02</th>
<th>Ey6_01</th>
<th>Ey6_02</th>
<th>Ey7_01</th>
<th>Ey7_02</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. ind.</td>
<td>63</td>
<td>62</td>
<td>129</td>
<td>64</td>
<td>172</td>
<td>273</td>
</tr>
<tr>
<td>no. spe.</td>
<td>14</td>
<td>8</td>
<td>13</td>
<td>13</td>
<td>34</td>
<td>38</td>
</tr>
<tr>
<td>Shannon-Wiener:</td>
<td>2.1</td>
<td>2.2</td>
<td>2.3</td>
<td>2.9</td>
<td>4.3</td>
<td>4.1</td>
</tr>
<tr>
<td>Pielou</td>
<td>0.56</td>
<td>0.72</td>
<td>0.61</td>
<td>0.80</td>
<td>0.84</td>
<td>0.77</td>
</tr>
<tr>
<td>ES100</td>
<td>14</td>
<td>8</td>
<td>12</td>
<td>13</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>SN</td>
<td>1.86</td>
<td>1.47</td>
<td>1.62</td>
<td>1.80</td>
<td>2.15</td>
<td>2.11</td>
</tr>
<tr>
<td>ISI-2012</td>
<td>7.33</td>
<td>6.42</td>
<td>6.62</td>
<td>7.64</td>
<td>8.59</td>
<td>8.71</td>
</tr>
<tr>
<td>AMBI</td>
<td>1.984</td>
<td>2.782</td>
<td>2.32</td>
<td>2.524</td>
<td>2.659</td>
<td>2.498</td>
</tr>
<tr>
<td>NQI1</td>
<td>0.68</td>
<td>0.55</td>
<td>0.62</td>
<td>0.63</td>
<td>0.70</td>
<td>0.71</td>
</tr>
<tr>
<td>NSI</td>
<td>22.7</td>
<td>20.9</td>
<td>21.7</td>
<td>20.1</td>
<td>21.6</td>
<td>21.6</td>
</tr>
<tr>
<td>DI</td>
<td>0.251</td>
<td>0.258</td>
<td>0.061</td>
<td>0.244</td>
<td>0.186</td>
<td>0.386</td>
</tr>
</tbody>
</table>

Bunndyrindekser, gjennomsnitt per stasjon

<table>
<thead>
<tr>
<th>st.nr.</th>
<th>Ey1</th>
<th>Ey2</th>
<th>Ey3</th>
<th>Ey4</th>
<th>Ey5</th>
<th>Ey6</th>
<th>Ey7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shannon-Wiener:</td>
<td>2.50</td>
<td>4.21</td>
<td>2.47</td>
<td>2.99</td>
<td>2.15</td>
<td>2.61</td>
<td>4.16</td>
</tr>
<tr>
<td>Pielou</td>
<td>0.66</td>
<td>0.80</td>
<td>0.63</td>
<td>0.65</td>
<td>0.64</td>
<td>0.70</td>
<td>0.81</td>
</tr>
<tr>
<td>ES100</td>
<td>12.3</td>
<td>29.2</td>
<td>13.4</td>
<td>15.5</td>
<td>11.0</td>
<td>12.4</td>
<td>26.8</td>
</tr>
<tr>
<td>SN</td>
<td>1.64</td>
<td>2.20</td>
<td>1.69</td>
<td>1.84</td>
<td>1.66</td>
<td>1.71</td>
<td>2.13</td>
</tr>
<tr>
<td>ISI-2012</td>
<td>7.50</td>
<td>8.96</td>
<td>7.48</td>
<td>8.13</td>
<td>6.87</td>
<td>7.13</td>
<td>8.65</td>
</tr>
<tr>
<td>AMBI</td>
<td>2.324</td>
<td>2.390</td>
<td>2.633</td>
<td>2.320</td>
<td>2.383</td>
<td>2.422</td>
<td>2.579</td>
</tr>
<tr>
<td>NQI1</td>
<td>0.63</td>
<td>0.73</td>
<td>0.61</td>
<td>0.67</td>
<td>0.61</td>
<td>0.63</td>
<td>0.70</td>
</tr>
<tr>
<td>DI</td>
<td>0.16</td>
<td>0.22</td>
<td>0.09</td>
<td>0.38</td>
<td>0.25</td>
<td>0.15</td>
<td>0.29</td>
</tr>
<tr>
<td>Tilstandsklasse nEQR *)</td>
<td>0.569</td>
<td>0.718</td>
<td>0.564</td>
<td>0.618</td>
<td>0.525</td>
<td>0.554</td>
<td>0.699</td>
</tr>
</tbody>
</table>

*) Tilstandsklasse nEQR er beregnet uten DI

EQR verdi = 0,999 er brukt når fauna indeks verdien er større enn maks indeks verdi i EQR formel.
Geometriske klasser

<table>
<thead>
<tr>
<th>int.</th>
<th>Ey1</th>
<th>Ey2</th>
<th>Ey3</th>
<th>Ey4</th>
<th>Ey5</th>
<th>Ey6</th>
<th>Ey7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>16</td>
<td>8</td>
<td>17</td>
<td>7</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>2-3</td>
<td>4</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>4-7</td>
<td>2</td>
<td>13</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>8-15</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>16-31</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>32-63</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>64-127</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>128-255</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>256-511</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>512-1023</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1024-2047</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2048-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Artsliste

Eyri ASC-C-undersøkelse 2018

<table>
<thead>
<tr>
<th>Stasjonsnr.: Ey1</th>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEMERTINI</td>
<td></td>
<td>ANNELIDA</td>
<td>Polychaeta</td>
<td>Orbinida</td>
<td>Nemertea indet.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cossurida</td>
<td>Aricidea sp.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sponida</td>
<td>Cossura longocirrata</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prionospio steenstrupi</td>
<td>Spiochaetopterus typicus</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chaetozone sp.</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phyllodocida</td>
<td>Eleone flava-longa</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Microphthalmus szczekowii</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nephys ciliata</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sternaspida</td>
<td>Sternaspis scutata</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oweniida</td>
<td>Galathowenia oculata</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Terebellida</td>
<td>Melinna cristata</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sabellida</td>
<td>Siboglinidae indet.</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CRUSTACEA</td>
<td>Malacostraca</td>
<td>Cumacea</td>
<td></td>
<td></td>
<td>Leucon sp.</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amphipoda</td>
<td></td>
<td></td>
<td>Oedicerotidae indet.</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crustacea indet. juv.</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MOLLUSCA</td>
<td>Prosobranchia</td>
<td>Mesogastropoda</td>
<td></td>
<td>Euspira pallida</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Bivalvia</td>
<td>Nuculoida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nuculana sp. juv.</td>
<td></td>
<td></td>
<td>Ennucula tenuis</td>
<td>53</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yolda hyperborea</td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Veneroida</td>
<td></td>
<td></td>
<td>Thyasira sarsii</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Macoma calcarea</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abra nitida</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ECHINODERMATA</td>
<td>Ophiuroidea</td>
<td>Ophiura</td>
<td></td>
<td></td>
<td>Ophiocen affinis</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ophiuroidea indet. juv.</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Stasjonsnr.: Ey2</td>
<td></td>
<td></td>
<td></td>
<td>Stasjonsnr.: Ey2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEMERTINI</td>
<td></td>
<td>SIPUNCULIDA</td>
<td></td>
<td></td>
<td>Nemertea indet.</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Maks: 53 121 174
Antall: 11 24 25
Sum: 352
ANNELIDA
Polychaeta

<table>
<thead>
<tr>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phascolion strombus</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Orbinida

<table>
<thead>
<tr>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leitoscoloplos mammosus</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Scoloplos armiger</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Levinsenia gracilis</td>
<td>25</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aricidea sp.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Spionida

<table>
<thead>
<tr>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dipolydora sp.</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prionospio steenstrupi</td>
<td>11</td>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spio limicola</td>
<td>8</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spionidae indet.</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chaetozone sp.</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Capitellida

<table>
<thead>
<tr>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Capitella capitata</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rhodine gracilior</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maldane sarsi</td>
<td>21</td>
<td>63</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Praxillella gracilis</td>
<td>14</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maldanidae indet.</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Phyllodocida

<table>
<thead>
<tr>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eteone flava/longa</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gattyana amondseni</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pholoe assimilis</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pholoe ballica</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pholoe inornata</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Goniada maculata</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nephtys ciliata</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nephtys paradoxa</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Eunicida

<table>
<thead>
<tr>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nothria hyperborea</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lumbrineris mixochaeata</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Scoletoma impatiens</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lumbrineridae indet.</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Sternaspida

<table>
<thead>
<tr>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sternaspia scutata</td>
<td>2</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

Owenida

<table>
<thead>
<tr>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Galathowenia oculata</td>
<td>3</td>
<td>31</td>
<td>34</td>
</tr>
</tbody>
</table>

Flabelligerida

<table>
<thead>
<tr>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diplocirrus glaucus</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Terebellida

<table>
<thead>
<tr>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Melinia cristata</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Melinia elisabethae</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Laphania boecki</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Terebellides sp.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Sabellida

<table>
<thead>
<tr>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Euchone analis</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sabellidae indet.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

CRUSTACEA
Ostracoda

<table>
<thead>
<tr>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ostracoda indet.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Malacostraca

<table>
<thead>
<tr>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leucon sp.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

MOLLUSCA
Caudofoveata

<table>
<thead>
<tr>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Caudofoveata indet.</td>
<td>3</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

Prosobranchia

<table>
<thead>
<tr>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mesogastropoda</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Bivalvia

<table>
<thead>
<tr>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ennucula tenuis</td>
<td>1</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nuculana perrula</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nuculana sp. juv.</td>
<td>5</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Rekke</td>
<td>Klasse</td>
<td>Orden</td>
<td>Art/Taxa</td>
<td>01</td>
<td>02</td>
<td>Sum</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>Veneroida</td>
<td></td>
<td></td>
<td>Crenella decussata</td>
<td>2</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Axinopsida orbiculata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thyasira sarsi</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thyasiridae indet.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Astarte montagui</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Abra nitida</td>
<td>11</td>
<td>19</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arctica islandica</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>ECHINODERMATA</td>
<td>Ophiuroidea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ophiocten affinis</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ophiuroidea indet. juv.</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Stasjonsnr.: Ey3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANNELIDA</td>
<td>Polychaeta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbiniida</td>
<td></td>
<td></td>
<td>Aricidae sp.</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cossurida</td>
<td></td>
<td></td>
<td>Cossura longocirrata</td>
<td>2</td>
<td>36</td>
<td>38</td>
</tr>
<tr>
<td>Spionida</td>
<td></td>
<td></td>
<td>Prionospio steenstrupi</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chaetozone sp.</td>
<td>1</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Capitellida</td>
<td></td>
<td></td>
<td>Maldane sarsi</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Praxillella praetemissia</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Opheliida</td>
<td></td>
<td></td>
<td>Ophelina sp.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Phyllodocida</td>
<td></td>
<td></td>
<td>Eteone flava/longa</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nephys ciliata</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Sternaspida</td>
<td></td>
<td></td>
<td>Sternaspis scutata</td>
<td>5</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Oweniida</td>
<td></td>
<td></td>
<td>Galathowenia oculata</td>
<td>51</td>
<td>41</td>
<td>92</td>
</tr>
<tr>
<td>Terebellida</td>
<td></td>
<td></td>
<td>Melinna cristata</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Sabellida</td>
<td></td>
<td></td>
<td>Euchone sp.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CRUSTACEA</td>
<td>Copepoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calanoida</td>
<td></td>
<td></td>
<td>Calanoida indet.</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Malacostraca</td>
<td></td>
<td></td>
<td>Amphipoda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lysianassidae indet.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Crustacea indet. juv.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MOLLUSCA</td>
<td>Bivalvia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuculoida</td>
<td></td>
<td></td>
<td>Ennuclea tenuis</td>
<td>42</td>
<td>47</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nuculana pernula</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nuculana sp. juv.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yoldia hyperborea</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Veneroida</td>
<td></td>
<td></td>
<td>Thyasira sarsi</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Macoma calcarea</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Abra nitida</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Stasjonsnr.: Ey4

<table>
<thead>
<tr>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ANSELIDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polychaeta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orbinida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scoloplos armiger</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Levinseria gracilis</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Aricida sp.</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cossurida</td>
<td></td>
<td>Cossura longicornata</td>
<td>8</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Spionida</td>
<td></td>
<td>Prionosio steenstrupi</td>
<td>24</td>
<td>25</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chaeolozone sp.</td>
<td>12</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Capitellida</td>
<td></td>
<td>Capitella capitata</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Praxillia gracilis</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Phylodocida</td>
<td></td>
<td>Eteoneflava/longa</td>
<td>11</td>
<td>32</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Micropthalmus szektoriowii</td>
<td>12</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nephys ciliata</td>
<td>2</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Eunicida</td>
<td></td>
<td>Ophryotrocha sp.</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sternaspis scutata</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Owenida</td>
<td></td>
<td>Galathowenia oculata</td>
<td>57</td>
<td>1</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Terebellida</td>
<td></td>
<td>Pectinariidae indet.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Melinna cristata</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sabelida</td>
<td></td>
<td>Chone sp.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Euchone analis</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Euchone sp.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sabelidae indet.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CRUSTACEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Copepoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calanoida</td>
<td></td>
<td>Calanoida indet.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Malacostraca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cumacea</td>
<td></td>
<td>Leucon sp.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Amphipoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oedicerotidiae indet.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MOLLUSCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prosobranchia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mesogastropoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bivalvia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nuculoida</td>
<td></td>
<td>Nuncula tenuis</td>
<td>134</td>
<td>47</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nuculana penua</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nuculana sp. juv.</td>
<td>6</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yoldia hyperborea</td>
<td>2</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Mytiloida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Modiolula phaseolina</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Veneroida</td>
<td></td>
<td>Axinopisida orbiculata</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thyasira gouldi</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thyasira sarsi</td>
<td>20</td>
<td>14</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thyasiridae indet.</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Parvicardium pinulatum</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Macoma calcarea</td>
<td>75</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Abra nitida</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Maks: 51 47 92
Antall: 15 19 23
Sum: 284
<table>
<thead>
<tr>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CHAETOIGNATA</td>
<td></td>
<td>Bryozoa indet.</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECHINODERMATA Asteroidea</td>
<td></td>
<td>Chaetognatha indet.</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paxillosida</td>
<td></td>
<td>Ctenodiscus crispatus</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maks:</td>
<td>134</td>
<td>75</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Antall:</td>
<td>29</td>
<td>24</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sum:</td>
<td>572</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stasjonsnr.: Ey5</td>
<td></td>
<td>NEMERTINI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANNELIDA Polychaeta</td>
<td></td>
<td>Nemertea indet.</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orbinida</td>
<td></td>
<td>Leitoscoloplos mammosus</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aricidea sp.</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cosurida</td>
<td></td>
<td>Cossura longocirrata</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sponida</td>
<td></td>
<td>Prionospio steenstrupi</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spio limicola</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chaetozoone sp.</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capitellida</td>
<td></td>
<td>Maldane sarsi</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phyllococida</td>
<td></td>
<td>Syllis cornuta</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nephtys ciliata</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Sernaspida</td>
<td></td>
<td>Sernaspis scutata</td>
<td>1</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Oweniida</td>
<td></td>
<td>Galathowenia oculata</td>
<td>11</td>
<td>33</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>CRUSTACEA</td>
<td></td>
<td>Crustacea indet. juv.</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOLLUSCA Bivalvia</td>
<td></td>
<td>Nuculoida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ennucula tenuis</td>
<td>38</td>
<td>9</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yoldia hyperborea</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Veneroida</td>
<td></td>
<td>Thyasira sarsi</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>BRYOZOA</td>
<td></td>
<td>Bryozoa indet.</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maks:</td>
<td>38</td>
<td>33</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Antall:</td>
<td>16</td>
<td>8</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sum:</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stasjonsnr.: Ey6</td>
<td></td>
<td>NEMERTINI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANNELIDA Polychaeta</td>
<td></td>
<td>Nemertea indet.</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Orbinida</td>
<td></td>
<td>Aricidea sp.</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cosurida</td>
<td></td>
<td>Cossura longocirrata</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Rekke</td>
<td>Klasse</td>
<td>Orden</td>
<td>Art/Taxa</td>
<td>01</td>
<td>02</td>
<td>Sum</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>----------------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spionida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prionospio steenstrupi</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chaetozoon sp.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phylodocida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eleone flava/longa</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Syllis cornuta</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neptys ciliata</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eunicida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ophryotrocha sp.</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Protodorvillea kefersteini</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sternaspidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Steraspis scutata</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Owenida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Galathowenia oculata</td>
<td>41</td>
<td>8</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Terebellida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Melina cristata</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sabellida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Euchone sp.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CRUSTACEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Copepoda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calanoida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calanoida indet.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Malacostraca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cumacea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leucon sp.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Decapoda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Paguridae indet.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Crustacea indet. juv.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MOLLUSCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bivalvia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nuculoida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ennucula tenuis</td>
<td>57</td>
<td>21</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nuculana sp. juv.</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yoldia hyperborea</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Veneroida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thyasira sarsii</td>
<td>9</td>
<td>13</td>
<td>22</td>
</tr>
<tr>
<td>BRYOZOA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bryozoa indet.</td>
<td>-1</td>
<td></td>
<td>-1</td>
</tr>
</tbody>
</table>

Maks: 57 21 78
Antall: 15 15 23
Sum: 197

Stasjonsnr.: Ey7
ANNELIDA
Polychaeta

<table>
<thead>
<tr>
<th>Rekke</th>
<th>Klasse</th>
<th>Orden</th>
<th>Art/Taxa</th>
<th>01</th>
<th>02</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Orbinia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leitoscoloplos mammosus</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Scoloplos armiger</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Levinseria gracilis</td>
<td>8</td>
<td>29</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arcoidea sp.</td>
<td>11</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Paraonidae indet.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cossurida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cossura longocirrata</td>
<td>10</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spionida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dipolydora sp.</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prionospio cimrfera</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prionospio steenstrupi</td>
<td>11</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Spio limicola</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chaetozoon sp.</td>
<td>8</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Capitellida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mediomastus fragilis</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rhodine gracilior</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maldane sarsi</td>
<td>29</td>
<td>53</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Praxillella gracilis</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Rekke</td>
<td>Klasse</td>
<td>Orden</td>
<td>Art/Taxa</td>
<td>01</td>
<td>02</td>
<td>Sum</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>---------------------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Praxillella praetermissa</td>
<td>7</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Maldanidae indet.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Phyllodocida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eteone flava/longa</td>
<td>6</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bylgides groenlandicus</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pholoe assimilis</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nephys ciliata</td>
<td>6</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sternaspida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sternaspis scutata</td>
<td>13</td>
<td>53</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oweniida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Galathowenia oculata</td>
<td>22</td>
<td>22</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Terebellida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lagis koreni</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pectinariidae indet.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ampharete borealis</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Melinna cristata</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Laphania boecki</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sabellida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chone sp.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Euchone sp.</td>
<td>8</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sabelididae indet.</td>
<td>5</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>CRUSTACEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CRUSTACEA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Copepoda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calanoidea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Calanoidea indet.</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Malacostraca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cumacea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Leucon sp.</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amphipoda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Byblis gaimardi</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oedicerotidae indet.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tiron spiniferus</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Isopoda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Asellota indet.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Decapoda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Paguridae indet.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>MOLLUSCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Caudofoveata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Caudofoveata indet.</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bivalvia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nuculoida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ennucula tenuis</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nuculana pernula</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nuculana sp. juv.</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yoldia hyperborea</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mytiloida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mytiloida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Veneroida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Venieroida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thyasira sarsi</td>
<td>1</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kellia suborbicularis</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Astarte montagui</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Macoma calcarea</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Abra nitida</td>
<td>3</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Arctica islandica</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>BRYOZOA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bryozoa indet.</td>
<td>-1</td>
<td></td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ECHINODERMATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ophiuroidea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ophiuroida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ophiocent affinis</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ophiuroidea indet. juv.</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maks:</td>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td>53</td>
<td>82</td>
</tr>
<tr>
<td>Antall:</td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>41</td>
<td>53</td>
</tr>
<tr>
<td>Sum:</td>
<td></td>
<td></td>
<td></td>
<td>451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rekke</td>
<td>Klasse</td>
<td>Orden</td>
<td>Art/Taxa</td>
<td>01</td>
<td>02</td>
<td>Sum</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maks: 181</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sum: 2373</td>
</tr>
</tbody>
</table>
Vedlegg 4. Analyserapport – Geokjemiske analyser

ANALYSERAPPORT
Sedimentprover

Kunde: Arnarlax
Kunde referanse: Eyri ASC/C forundersøkelse
Kontaktperson kunde:

Kontaktperson Akvaplan-niva: Snorri Gunnarsson
Date: 26.09.2018

Rapport nr.: 60033
Analyseparameter(e): Korn, TOM, TOC, TN, Cu
Kontaktperson: Ida Gjørv Eyri Tvetter

Analyseansvarlig: Ida Gjørv Eyri Tvetter

Underskriftsberettiget: Anja Sjøvoll

Prøvene ble sendt/levert til Akvaplan-Niva AS av oppdragsgiver, og merket som angitt i tabellen på side 2. Resultater av analysene er gitt fra side 3.

MERKNADER:
Prøve 6 inneholder 2 stykk skjellbiter større enn 15mm som ikke er inkludert i kornanalysen. Steinene ville utgjøre 1,5 vekt% av den totale prøven.

Analysene gjelder bare for de prøver som er testet. De oppgitte analyseresultat omfatter ikke feil som måtte følge av provtakningen, inhomogenitet eller andre forhold som kan ha påvirket prøven før den ble mottatt av laboratoriet. Rapporten får kun kopieres i sin helhet og uten noen form for endringer. En eventuell klage skal leveres laboratoriet senest en måned etter mottak av analyseresultat. Nøytrere informasjon om analysemetoder (måleutstyr, metodegrunnlag etc.) får ved henviselse til Akvaplan-Niva AS.
<table>
<thead>
<tr>
<th>Lab-id.</th>
<th>Kundens id.</th>
<th>Materiale</th>
<th>Beskaffenhet ved mottak</th>
<th>Mottatt lab</th>
<th>Parametere</th>
<th>Analyse-periode</th>
</tr>
</thead>
<tbody>
<tr>
<td>60033/Ey-1</td>
<td>Ey-1</td>
<td>Sediment</td>
<td>Frossent</td>
<td>22.06.2018</td>
<td>Korn, TOM, TOC, TN, Cu</td>
<td>03.09.18-27.09.18</td>
</tr>
<tr>
<td>60033/Ey-2</td>
<td>Ey-2</td>
<td>Sediment</td>
<td>Frossent</td>
<td>22.06.2018</td>
<td>Korn, TOM, TOC, TN, 2xCu</td>
<td>03.09.18-27.09.18</td>
</tr>
<tr>
<td>60033/Ey-3</td>
<td>Ey-3</td>
<td>Sediment</td>
<td>Frossent</td>
<td>22.06.2018</td>
<td>Korn, TOM, TOC, TN, 2xCu</td>
<td>03.09.18-27.09.18</td>
</tr>
<tr>
<td>60033/Ey-4</td>
<td>Ey-4</td>
<td>Sediment</td>
<td>Frossent</td>
<td>22.06.2018</td>
<td>Korn, TOM, TOC, TN, 2xCu</td>
<td>03.09.18-27.09.18</td>
</tr>
<tr>
<td>60033/Ey-5</td>
<td>Ey-5</td>
<td>Sediment</td>
<td>Frossent</td>
<td>22.06.2018</td>
<td>Korn, TOM, TOC, TN</td>
<td>03.09.18-27.09.18</td>
</tr>
<tr>
<td>60033/Ey-6</td>
<td>Ey-6</td>
<td>Sediment</td>
<td>Frossent</td>
<td>22.06.2018</td>
<td>Korn, TOM, TOC, TN</td>
<td>03.09.18-27.09.18</td>
</tr>
<tr>
<td>60033/Ey-7</td>
<td>Ey-7</td>
<td>Sediment</td>
<td>Frossent</td>
<td>22.06.2018</td>
<td>Korn, TOM, TOC, TN, 2xCu</td>
<td>03.09.18-27.09.18</td>
</tr>
<tr>
<td>60033/Cu ref 2</td>
<td>Cu ref 2</td>
<td>Sediment</td>
<td>Frossent</td>
<td>22.06.2018</td>
<td>2xCu</td>
<td>03.09.18-27.09.18</td>
</tr>
</tbody>
</table>

Følgende analysemetoder er benyttet

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Metoderreferanse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalt organisk materiale-TOM</td>
<td>Intern metode basert på NS 4764-1980</td>
</tr>
<tr>
<td>Kobber-Cu / Kalium-Cd (utført av unde111e)</td>
<td>EPA 200.7, ISO 11885, EPA 6010 og SM 3120</td>
</tr>
</tbody>
</table>
Resultater

<table>
<thead>
<tr>
<th>Kundens id.:</th>
<th>TOM</th>
<th>TOC**</th>
<th>N TOC**</th>
<th>TN**</th>
<th>C/N**</th>
<th>Pelitt</th>
<th>> 0,063 mm</th>
<th>Cu*</th>
<th>Cu*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ey-1</td>
<td>% TS</td>
<td>mg/g TS</td>
<td>% TS</td>
<td>mg/g TS</td>
<td>%</td>
<td>vekt%</td>
<td>vekt%</td>
<td>mg/kg TS</td>
<td>mg/kg TS</td>
</tr>
<tr>
<td>Ey-2</td>
<td>14,9</td>
<td>28,8</td>
<td>30,0</td>
<td>6,6</td>
<td>4,4</td>
<td>93,5</td>
<td>6,5</td>
<td>33,6</td>
<td>ia</td>
</tr>
<tr>
<td>Ey-3</td>
<td>10,8</td>
<td>20,5</td>
<td>27,8</td>
<td>4,9</td>
<td>4,2</td>
<td>59,4</td>
<td>40,6</td>
<td>28,8</td>
<td>35</td>
</tr>
<tr>
<td>Ey-4</td>
<td>14,5</td>
<td>28,3</td>
<td>29,1</td>
<td>6,0</td>
<td>4,7</td>
<td>95,6</td>
<td>4,4</td>
<td>32,3</td>
<td>36,1</td>
</tr>
<tr>
<td>Ey-5</td>
<td>14,0</td>
<td>28,1</td>
<td>30,2</td>
<td>6,2</td>
<td>4,5</td>
<td>88,3</td>
<td>11,7</td>
<td>34,7</td>
<td>30,2</td>
</tr>
<tr>
<td>Ey-6</td>
<td>14,9</td>
<td>29,2</td>
<td>29,8</td>
<td>6,8</td>
<td>4,3</td>
<td>96,4</td>
<td>3,6</td>
<td>ia</td>
<td>ia</td>
</tr>
<tr>
<td>Ey-7</td>
<td>10,0</td>
<td>29,7</td>
<td>30,7</td>
<td>6,5</td>
<td>4,6</td>
<td>94,5</td>
<td>5,5</td>
<td>ia</td>
<td>ia</td>
</tr>
<tr>
<td>Cu ref 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35,4</td>
<td>35,2</td>
</tr>
</tbody>
</table>

* Analysen er utført av ALS Laboratory Group, ALS Czech Republic s.r.o, Na Harfě 9/336, Praha, Tsjekkia
Akkreditering: Czech Accreditation Institute, labnr. 1163
** Uakukanet analyse eller beregning utført av Akvaplan-niva AS

N TOC (Normalisert TOC) = m unnoticed TOC mg/g + 18*(1-P), der P=andel fistoff (pellett) gitt ved %pellett/100.

ia = ikke analysert

Tilstandsklassifisering for organisk innhold i marine sedimenter iht. Veileder 02-2013 (rev. 2013):

<table>
<thead>
<tr>
<th>Normalisert TOC, mg/g TS</th>
<th>< 20</th>
<th>20-27</th>
<th>27-34</th>
<th>34-41</th>
<th>41</th>
<th>41+</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
<td>VI</td>
<td></td>
</tr>
</tbody>
</table>

Tilstandsklassifisering for kobber (Cu) i marine sedimenter (grenseverdier fra M-608/2016):

<table>
<thead>
<tr>
<th>Cu, mg/kg TS</th>
<th>< 20</th>
<th>20-84</th>
<th>84 - 147</th>
<th>147</th>
<th>147+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klasse 1</td>
<td>Klasse II/III</td>
<td>Klasse IV</td>
<td>Klasse V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Side 3 av 3